零点小说网

零点小说网 > 玄幻小说 > 走进不科学 > 《走进不科学》正文 第八百零七章 我徐某人从未开挂.....思维卡,激活!

《走进不科学》正文 第八百零七章 我徐某人从未开挂.....思维卡,激活!(第2页/共2页)

时间研究过,奈何由于能力问题,他一直没有找出正确的解——如今徐云的能力大概在教授之上院士之下,而这两个阶段中最简单的第二阶段也属于菲尔兹奖也就是数学最高奖的难度层次了。

至于第三阶段的那个神秘比值徐云敢肯定,它一定是一项可以震动世界的结果,保守估计都和相对论是同一级的,属于徐云目前哪怕花掉所有思维卡都不可能触及的高度。

至少徐云得和老爱见过一次面,才有可能讨论那事儿。

当然了。

没结果归没结果,徐云倒也不至于一点收获都没有。

譬如在解方程的过程中他就发现,第二阶段的最终成果应该与某个机理有关。

因为徐云在期间发现了温度和类似层状结构的表达式,显然是某种物理现象的新媒介,而且多半和晶体有一定关系。

所以在得知了自己答辩委员会的评审阵容之后,徐云便把主意打到了第二阶段的成果上。

他有一种预感,第二阶段的这个未必能够给他带来多少奖项上的荣誉,但很可能会产生某种更大的影响力。

当然了。

即便徐云的猜测有误也没事儿,徐云手上还有冷聚变的相关研究做打底呢。

随后徐云深吸一口气,将注意力放到了面前的算纸上。

只见他拿起笔,很快在纸上写下了那道方程:

4d\/b2=4(√(d1d2))2\/[2d0]2=√(d1d2)\/[d0]=(1-η2)≤1

{qjik}k(z\/t)=∑(jik=s)n(jik=q)(xi)(wj)(rk);(j=0,1,2,3…;i=0,1,2,3…;k=0,1,2,3…)

{qjik}k(z\/t)=[ xak(z±s±n±p),xbk(z±s±n±p),…,xpk(z±s±n±p),…}∈{dh}k(z±s±n±p)

(1-ηf2)(z±3)=[{k(z±3)√d}\/{r}]k(z±±n±3)=∑(ji=3)(ηa+ηb+ηc)k(z±n±3);

(1-η2)(z±(n=5)±3):(k(z±3)√120)k\/[(1\/3)k(8+5+3)]k(z±1)≤1(z±(n=5)±3);

w(x)=(1-η[xy]2)k(z±s±n±p)\/t{0,2}k(z±s±n±p)\/t{w(x0)}k(z±s±n±p)\/t

最后的一个公式或者说一个数值为:

le(sx)(z\/t)=[∑(1\/c(±s±p)-1{nxi-1}]-1=n(1-x(p) p-s)-1。

这是一个标准的正则化组合系数和解析延拓方程组,涉及到了无限多层次的对称与不对称曲线曲面的圆对数与拓扑。

其中第一阶段是一到三行,通过∑(jik=s)n(jik=q)(xi)(wj)可以确定曲面与经线成了某个定角,从而假设定模型λ=( a, b,π),以及观测序列o =( o1, o2,, ot )。

按照上面的逻辑推导,就可以得出孤点粒子的概率轨道。

而徐云现在要做的则是

推导第三到第五行,也就是第二阶段。

徐云解答第二阶段的思路是讨论存在性问题,再将现在的收敛半径变为无穷大,从而在整个实数线上收敛。

如今在陈景润思维卡的加持下,徐云对于自己思路的把握又高了几分——这个方向没错。

随后他顿了顿,继续推导了起来。

“已知允许幂级数中的变量x取复数值时,幂级数收敛的值在复平面上形成一个二维区域,就幂级数来说,这个区域总是具有圆盘的形状”

“然后利用高斯函数的fourier变换 f{e?a2t2}(k)=πae?π2k2\/a2,以及poisson求和公式可以得到”

“考虑积分g(s)=12πi∮γzs?1e?z?1dz,其中围道应该是lik→∞gk(s)=g(s)”(这些推导是我自己算的,这部分我不太确定正不正确,用了留数定理和梅林积分变换,要是有问题欢迎指正或者读者群私聊我,这种涉及到比较多数学问题的推导不是我的专精方向)

众所周知。

解析延拓就是指两个解析函数 f1(z)与 f2(z)分别在区域d1与d2解析,区域d1与d2有一交集 d,且在区域d上恒有 f1(z)=f2(z)。

这时便可以认为解析函数 f1(z)与 f2(z)在对方的区域上互为解析延拓,同时解析函数 f1(z)与 f2(z)实际上是同一函数 f(z)在不同区域的不同表达式。

举个最简单的例子。

由幂级数定义的函数 f1(z)=∑n=0∞zn在单位圆|z|

所以我们说函数 f(z)=11?z是幂级数 f1(z)在复平面上的解析延拓。

非常简单,也非常好理解。

徐云在第一阶段得到的广义积分在0c||re(s)

“然后再引入Γ函数,它是阶乘函数在实数与复数域上的扩展,当它的宗量为正整数时,有Γ(n)=(n?1)!”

“这部分似乎可以用渐进概念来做个近似”

“如果近似到场论的话,相当于量子化自由kle-gordon场时,(+2)?(x)=0,那么场算符就是?(x)=∫d3p(2π)312ep(ape?ipx+ap?eipx)”

“然后再把场算符代算回来”

半个小时后。

徐云忽然停下了笔,眉头微微皱了起来:

“激发电场果然是和晶体有关。”

此时此刻。

徐云面前的算纸之上,赫然正写着几个nab算符。

要知道。

他之前虽然对推导过程进行过渐进处理,但本身是没有引入激发电场概念的,更别说徐云之前还完成了代算。

也就是说这几个nab算符并不是渐进项解开后出现的错误算子,而是与方程自身有关的参数。

更重要的是

随着这一步方程的解开,公式中出现了一个新的并立项。

它叫做频率,计量单位是v。

频率、激发电场、加上徐云最早独力发现的类似层状结构的表达式

第二阶段成果的物理意义,似乎已经呼之欲出了。

想到这里。

徐云重新拿起边上的茶杯猛灌了一大口浓茶,重新提笔计算了起来。

“先做个实空间中的局域连续函数,然后把低能有效拉格朗日量根据对称性的要求表达成Φ的泛函”

“左右乘e?2πjt\/t0并在(?t02,t02)上积分,左侧显然为1,而右侧由正交性不难得到结果为t0”

“然后再运用个搞积技巧”

“当 re(s)>1时,∫x?sdx在 x→0+处有可能有奇性,比如∫x?2dx=∫d(?x?1)=?x?1+c”

“叽里咕噜1+2+3=6”

又过了二十多分钟。

在陈景润思维卡即将到期之际,徐云整个人的肩膀顿时一松,吧嗒一下靠到了椅背上。

此时此刻。

他面前已然堆满了书写的密密麻麻的算纸,上头尽是各种对于普通人如同魔文的推导过程。

“终于搞定了,果然是它”

注:

暗示的很清楚了,有没有同学猜到是啥?

玩个小游戏,如果有人猜中答案,下本书可以定制一个主角团的角色,当然名字不能太离谱,多人猜中按照最早楼层的那个为准。
『加入书签,方便阅读』